
International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

38

Input

Data

Data

Compression
Output

Data
Serial

Communication

Processor

An Optimum Algorithm for Data Compression using
VHDL: A Review

Mr. Pralhad Sarkar1, Prof. Ravindra Kadam2, Prof. Prashant Indurkar3

1M.Tech(VLSI) Scholar, B.D.C.E, Sewagarm, Wardha. Email: Sarkar619@rediffmail.com
2Assistant Professor, B.D.C.E, Sewagarm, Wardha. Email: Rdk_arvi@rediffmail.coms

3Associate Professor, B.D.C.E, Sewagarm, Wardha. Email: Prashantindurkar@rediffmail.com

Abstract-Today’s embedded system has a numerous application, but it has a limited internal memory. This paper
review and discuss an optimum algorithm for data compression using VHDL so that we can access wide range of
program in a limited internal memory. The main objective of data compression is to find out the redundancy and
eliminate them through different efficient methodology, so that the data which is reduced require less memory as
well as the size of the data decreases hence the cost of transmission is also reduce. This paper gives comparative
study of different compression method.

Index terms –code compression; embedded system; pattern block;lossy; multilevel dictionary.

1. INTRODUCTION

With the increase in the requirement of online real
time data, data compression algorithms are to be
implemented for increasing throughput. Compression
is the art of representing information in a compact
form rather than its original or uncompressed form.
The compression code is place in main memory
and/or instruction cache memory, thereby increasing
the number of stored instruction, then increasing the
cache hit rate and decreasing the search into the main
memory, thus increasing the system performance and
reducing power consumption. The original file which
is to be compressed is first coded which is then
known as encrypted file. For any efficient
compression algorithm file size must be less than the
original file. To get back the original file we need to
‘decrypt’ the encoded file. Data compression
methods are sometime very difficult as it require
hardware for its implementation ants of maintains.

Data compression can either can be lossless or lossy.
Lossless data compression recreates the exact
original data from the compressed data while lossy
data compression cannot regenerate the perfect
original data from the compressed data. The data
source transmits data which is received by the
processor. Compressed data is received at the output
port of the processor. Fig. 1explains this process.

A good compression rate can be achieved by
compressing the instruction which occurs most

frequently into the code, and that can be obtained
from analysis conducted in static or dynamic form.

 Fig. 1 Data Compression Logic

The goal of data compression is to eliminate the
redundancy in a file’s code in order to reduce its size.
It is useful in reducing the data storage space and in
reducing the time needed to transmit the data. The
evolution of computing has created a rapid expansion
in the volume of data to be stored on hard disk and
sent over the internet. This growth has led to a need
for data compression (i.e. the ability to reduce the
amount of storage or internet bandwidth required to
handle data). The Soft Core Processor uses serial port
and for direct input the GPIO of the processor were
used. The user enters text data through this port, and
the soft core processor using Huffman’s data
compression algorithm gives compressed data as the
output.

The main purpose of data compression is to find out
redundancy and eliminate them through different
efficient methodology. The code compression helps

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

39

make better use of the resources of embedded system.
As the evolution of computing has created a rapid
expansion in the volume of data to be stored on hard
disks and sent over the internet. This growth has led
to need for data compression.

2. LITURATURE SURVEY

Wander Roger Azervedo Dias, Edward David
Moreno and IssancPalmeria give a new method of
code compression for embedded systems by them as
CC-MLD (Compressed Code using Huffman-Based
Multi-Level Dictionary). This method applies two
compression techniques and it uses the Huffman code
compression algorithms. A single dictionary is
divided into two levels and it is shared by both
techniques. They performed simulations using
application from MiBench and they had used four
embedded processor (ARM, MIPS, PowerPC and
SPARC). Their method reduces code size up to
30.6% (including all extra costs for these four
platforms). They had implemented the decompressor
using VHDL and FPGA and they had obtained one
clock from decompression process [1].

Ivan Scherbakov, Christian Weis and Norbert When
had describe a design and develop a data
compression engine on a single FPGA chip that is
used as part as part of text-classification application.
The implementation of the prediction by partial
matching algorithm and arithmetic coding data
compression is totally in hardware as well as in
software code. Their design implements a dynamic
data structure to store the symbol frequency counts
up to maximal order of 2. The computation of the
tag-interval that encodes the data sequence in
arithmetic coding is done in parallel architecture that
achieves a high speed up factor. Even with a
relatively slow 50MHz clock their hardware engine
performs more than 70 times faster than a software
based implementation in C on a CPU running on a 3
Ghz clock. [2]

Joel Ratsaby and VadimSirota had presented a
flexible high-performance implementation of the
LZSS compression algorithm capable of processing
up to 50 MB/s on a Virtex-5 FPGA chip. They
exploit the independently addressable dual-port block
RAMs inside the FPGA chip to achieve an average
performance of 2 clock cycles per byte. To make the
compressed stream compatible with the ZLib library
they encode the LZSS algorithm output using a fixed
Huffman table defined by the Deflate specification.
They also demonstrate how changing the amount of
memory allocated to various internal tables impacts
the performance and compression ratio. Finally, they
provide a cycle-accurate estimation tool that allows

finding a trade-off between FPGA resource
utilization, compression ratio and performance for a
specific data sample.[3]

Vijay G. Savani, Piyush M. Bhatasana describes the
methods of creating dedicated hardware which can
receive uncompressed data as input and transmit
compressed data at the output terminal. This method
uses FPGA for the same, wherein the hardware part
has been created using Xilinx Embedded
Development Kit (EDK) and data compression
algorithms have then been implemented on the same
hardware. The EDK helps creating a Soft Core
Processor on the FPGA with desired specifications.
The data compression algorithm can be implemented
on this processor. The advantage of this kind of a
system is that, without changing the hardware, the
FPGA can be reprogrammed with a new algorithm
whenever a better technique is discovered. For the
proof of concept the Huffman coding technique has
been implemented. The Soft Core Processor uses
serial port and for direct input the GPIO of the
processor were used. The user enters text data
through this port, and the soft core processor using
Huffman’s data compression algorithm gives
compressed data as the output [4].

ArohiAgarwal and V.S.Kulkarni had discussed about
Data transmission, storage and processing are very
necessary nowadays. Data can be represented in
compact form using data compression for
transmitting and storing a huge volume of data
required large space which is an issue. In order to
transmit and store such a large volume of data it
requires large memory space and large bandwidth
avability. Because of which the hardware increases as
well as cost increases. Hence to solve this it is
necessary to reduce the size of the data which is to be
transmitted without any information loss .For this
purpose they have taken the following algorithm.
LZMA is a lossless dictionary based algorithm which
is used in 7zip was proving to be effective in
unknown byte stream compression for reliable
lossless data compression. Here the algorithm LZMA
is implemented on SPARTAN 3E FPGA to design
both the encoder and the decoder which reduces the
circuit size and its cost [5].

3. OVERALL ANALYSIS OF REPORTED
WORK AND COMPARATIVE STUDY

[1]This paper presents a new code compression
method (CC-MLD Compressed Code using Huffman
– Based Multi-Level Dictionary) that was
implemented in C language. Through the simulation

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

40

they can reached on average for the four processor a
compression rate close to 31% and they detect that
the decompression process was executed in just one-
clock. This method (CC-MLD) method doesn’t bring
big overhead to the execution of programs in
embedded processor.

[2]This paper describes a high performance flexible
implementation of LZSS algorithm on vertix5 FPGA.
The design compressor is flexible and allows tuning
various parameters to achieve trade –offs between the
speed, compression ratio and block RAM utilization.
The drawback of this method is 8.4% of the time is
spent on waiting for the headtable to read when the
prefetched hash value is not useful (i.e when a valid
match is found and several bytes are skipped).

[3] in this paper give a data compressor that use the
PPM algorithm with arithmetic coding. It is
implemented on a single FPGA chip on an
inexpensive evaluation board (Xilinx Spartan 3A)
with a 50 Mhz clock. This compressor executes the
algorithmic stages in parallel. The PPM unit updates
multiple data stuctures, some of which are
dynamically and increntally allocated, that keep the
symbol count statistics. The advantage of this
compressor is more 70 times faster than a C based
software implementation running on a 3Ghz PC.

[4]This project shows how data from the source can
be received by means of a serial port and processed
for data compression on Soft Core Processor. In this
paper Huffman data compression algorithm is used as
the compression technique. The data being
compressed was text entered by the user through
serial port. But this method is complicated for any bit
stream representing any form of multimedia (audio,
video or image).

[5]This paper present a portable and efficient LZMA
compression algorithm will be implemented using
VHDL that provides an excellent platform for Real
time compression application. Encoding and
decoding process are fully functional at 50MHz and
compression ratio is comparable with that of real
compression ratio.

Author Platform
Bench-
mark

Compression
Rate

Wanderson
Dias
&
Edward
Moreno

ARM

MiBen
ch

31.3%

MIPS 30.7%
PowerPc

30.3%

SPARC 29.9%

Ivan
sheherbakov

Vertax 5
FPGA
Chip

Xilinx 50MB/s

Joel Ratsaby FPGA Xilinx 70% faster
than C based

program.

Vijay G.
Savani

Soft core
processor

Xlinx -------

ArohiAgarw
al

FPGA

Xilinx Fully
functional

with 50MHz.

TABLE I SUMMERY OF RELATED WORK

4. OBJECTIVE
1. As we referred the previous method, in which the

techniques used to obtain compressed data on
MiBench benchmark using C language coding.
So our first objective is to find out how we get
compressed data on different benchmark using
VHDL coding to vary the compression rate form
previous one.

2. So this compression technique will also reduce
delay.

3. This technique will be faster than C based
compression technique.

4. It will optimize in Area/memory.
5. Vary the compression rate form pervious work

5. PROPOSED METHODLOGY

5.1 OPTIMUM DATA COMPRESSION METHOD.

Length are encoded separately and the bit mask is
also encoded search buffer should have a suitable
data structure which reduces the times required for
long matching. The encoded process is more typical
as it needs to encode the longest match and decode as
it need to encode the longest match and the decoding
is far easier. The fig, 2 gives basic steps required for
the compression process.

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

41

Input data

Build the Source

Update the Tree with fresh

scanned symbols

Optional Cleanup of the oldest

branches

Compressed Data

Find the Best match

Start Recursion

Fig. 2

Compression Process Flow

5.2 ENCODING AND DECODING PROCESS

The input data stream is selected properly by using
delta filter and then its effective compression is done
using the compression technique. The data is store in
the sequential from rather than complete file. The
data stream which is used as the input is the output of
the first byte of delta encoding.

The difference between the current and its previous
bytes is store as the subsequent byte. The data
encoding is basically used to make the encoding
more effectively by continuous varying of real time
data.

5.3 EFFICIENT DELAY

This Data compression technique using VHDL gives
an efficient delay in data encoding and decoding
process which makes boost up the speed.

5.4 Area/ memory Optimization

The extremely fast growth of data that needs to be
stored and transferred has given rise to the demand of
better transmission and storage techniques. This data
compression technique gives an optimum area or
memory as required, which gives fastest processing.
It is useful in reducing the data storage space and in
reducing the time needed to transmit the data.

6. CONCULSION

The simple, portable and efficient compression
algorithm will be implemented using VHDL that
provides an excellent platform for Real time
compression application. The proposed method will
be tested with Altera modelsim software for various
input data size and the different compression ratio
will be calculated. Further this architecture can be
extended to application specific integrated circuit so
as to design a specific hardware ship for various data
compression algorithm.

REFERENCE
[1] Wander Roger Azevedo Dias, Edward David

Moreno, IssancPalmeria, “ A New code
compression Algorithm and its Decompressor in
FPGA – Based Hardware” IEEE, 2013.

[2] Ivan Shcherbakov, Christian Weis, Norbert
When, “A High-Performance FPGA-Based
implementation of LZSS compression
algorithm, IEEE, 2012.

[3] Joel Ratsaby, vadimSirota, “ FPGA – based
data compression based on Prediction by
Partial Matching, IEEE, 2012.

[4] Vijay G. Savani, Piyush M. Bhatasana,
AkashMecwan, “Implementation of Data
Compression Algorithm on FPGA using soft
core processor” ijict, Dec,2012.

[5] “FPGA based implementation of Data
compression using Dicitionary based ‘LZMA’
Algorithm” by ArohiAgrawal, V.S.Kulkarni,
IRF international Conference.

[6] “FPGA Based Lossless Data Compression
using Huffman and LZ77 Algorithms”, @2007,
IEEE.

[7] Indian Journal of Computer Science and
Engineering,”Comprarison of Lossless Data
Compressional Algorithms for text Data”, by
S.R. KODITUWAKKU.

[8] “Data compression Methodologies for Lossless
Data and Comparison between Algorithms”,
International Journal of Engineering Science

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

42

and Innovative Technology (IJESIT) issue 2,
March 2013.

[9] “ Analysis and compression of Algorithms for
Lossless Data Compression”, International
Journal of Information and Computation
Technology, ISSN 0974-2239 Volume 3,2013

[10] “FPGA-Based lossless Data Compression using
GNU Zip”, thesis presented to university of
Waterloo, Ontario, Canada, 2007.

